论文标题
以科学和技术信息为导向语义 - 对抗和媒体对话跨媒体检索
Scientific and Technological Information Oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval
论文作者
论文摘要
科学和技术信息的跨媒体检索是跨媒体研究的重要任务之一。跨媒体科学和技术信息检索从大量的多源和异构科学和技术资源中获取目标信息,这有助于设计满足用户需求的应用,包括科学和技术信息建议,个性化的科学和技术信息检索等。与其他媒体相比,可以直接学习跨部媒体,以便与其他媒体进行比较。在子空间学习中,现有方法通常集中于建模媒体内部数据的歧视和映射后媒体间数据的不变性。但是,他们忽略了媒体内和媒体歧视内部媒介数据之前和之后媒体间数据的语义一致性,这限制了交叉媒体检索的结果。鉴于此,我们提出了一种科学和技术信息的语义 - 对抗性和媒体 - 媒介跨媒体检索方法(SMCR),以找到有效的共同子空间。具体而言,SMCR除了建模媒体内语义歧视之外,还可以最大程度地减少媒体间语义一致性的损失,从而保留映射前后的语义相似性。此外,SMCR构建了一个基本的功能映射网络和精制的功能映射网络,以共同最大程度地减少语义中的媒体判别损失,从而增强功能映射网络使媒体判别网络混淆的能力。两个数据集的实验结果表明,所提出的SMCR在跨媒体检索中的最先进方法。
Cross-media retrieval of scientific and technological information is one of the important tasks in the cross-media study. Cross-media scientific and technological information retrieval obtain target information from massive multi-source and heterogeneous scientific and technological resources, which helps to design applications that meet users' needs, including scientific and technological information recommendation, personalized scientific and technological information retrieval, etc. The core of cross-media retrieval is to learn a common subspace, so that data from different media can be directly compared with each other after being mapped into this subspace. In subspace learning, existing methods often focus on modeling the discrimination of intra-media data and the invariance of inter-media data after mapping; however, they ignore the semantic consistency of inter-media data before and after mapping and media discrimination of intra-semantics data, which limit the result of cross-media retrieval. In light of this, we propose a scientific and technological information oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval method (SMCR) to find an effective common subspace. Specifically, SMCR minimizes the loss of inter-media semantic consistency in addition to modeling intra-media semantic discrimination, to preserve semantic similarity before and after mapping. Furthermore, SMCR constructs a basic feature mapping network and a refined feature mapping network to jointly minimize the media discriminative loss within semantics, so as to enhance the feature mapping network's ability to confuse the media discriminant network. Experimental results on two datasets demonstrate that the proposed SMCR outperforms state-of-the-art methods in cross-media retrieval.