论文标题
模块化曲线上的ParsonPoincaré系列的循环积分和地球学的交点角度
Cycle Integrals of the Parson Poincaré Series and Intersection Angles of Geodesics on Modular Curves
论文作者
论文摘要
我们证明了帕森重量2K模块化积分循环积分的几何公式,就模块化曲线的地球学的相交角而言。我们的结果是由于katok而导致的某些双曲线庞加莱系列的经典公式的模块化积分的类似物。另一方面,它扩展了Matsusaka和Duke,imamoglu和Tóth的最新几何公式,以进行重量2模块化积分的循环积分。
We prove a geometric formula for the cycle integrals of Parson's weight 2k modular integrals in terms of the intersection angles of geodesics on modular curves. Our result is an analog for modular integrals of a classical formula for the cycle integrals of certain hyperbolic Poincaré series, due to Katok. On the other hand, it extends a recent geometric formula of Matsusaka and Duke, Imamoglu, and Tóth for the cycle integrals of weight 2 modular integrals.