论文标题

部分可观测时空混沌系统的无模型预测

Minimum Height Drawings of Ordered Trees in Polynomial Time: Homotopy Height of Tree Duals

论文作者

Parsa, Salman, Ophelders, Tim

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider drawings of graphs in the plane in which vertices are assigned distinct points in the plane and edges are drawn as simple curves connecting the vertices and such that the edges intersect only at their common endpoints. There is an intuitive quality measure for drawings of a graph that measures the height of a drawing $ϕ: G \rightarrow \mathbb{R}^2$ as follows. For a vertical line $\ell$ in $\mathbb{R}^2$, let the height of $\ell$ be the cardinality of the set $\ell \cap ϕ(G)$. The height of a drawing of $G$ is the maximum height over all vertical lines. In this paper, instead of abstract graphs, we fix a drawing and consider plane graphs. In other words, we are looking for a homeomorphism of the plane that minimizes the height of the resulting drawing. This problem is equivalent to the homotopy height problem in the plane, and the homotopic Fréchet distance problem. These problems were recently shown to lie in NP, but no polynomial-time algorithm or NP-hardness proof has been found since their formulation in 2009. We present the first polynomial-time algorithm for drawing trees with optimal height. This corresponds to a polynomial-time algorithm for the homotopy height where the triangulation has only one vertex (that is, a set of loops incident to a single vertex), so that its dual is a tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源