论文标题
KAON标签(eNubet)的增强中微子梁增强
Enhanced NeUtrino BEams from kaon Tagging (ENUBET)
论文作者
论文摘要
Enubet的目的是证明“监测”中微子束的可行性,其中中微子通量的绝对归一化可以在1%的水平上限制。 $ν_e$通量是通过从$ k_ {e3} $衰减中的40 m长仪器衰减隧道中的大角度$ e^+$确定的。 $ν_μ$通量由$ k $和$π$的衰减产生的muons提供。作为一个狭窄的带梁($ p = 8.5 $ gev/$ c $ \ pm $ 10%),可以利用检测器上的互动的横向位置来确定先验中微子能量谱,而无需依赖最终状态重建(“狭窄的频段离轴技术狭窄”)。可以根据标准加速器技术在单个设施中实施Lepton监控和狭窄的频带离轴能量重建,用于新一代的高精度$ν_e$和$ν_μ$ cross截面测量,以超出标准3 $ν$ paradigm的物理学搜索。在2019 - 2022年,Enubet设计了该设施的第一个端到端模拟,并证明可以在$ \ sim $ 3年的数据中实现精度目标,该数据采用了中微子探测器(fnal in fnal,fnal,protodune,protodune,cern的Protodune)。被监视的光束的技术已被证明是可行且具有成本效益的,并且复杂性并不显着超过传统的短基线梁之一。因此,雪地2021 DPF社区计划练习是及时考虑的,以考虑主持下一代横截面实验的受监测的中微子梁。依仪结果将在未来长基线实验的系统减少计划中发挥重要作用,从而增强了沙丘和超级Kamiokande的物理覆盖范围。在本文档中,我们总结了与Dune相当的时间表中的eNubet设计,物理性能和实施的机会。
ENUBET aims at demonstrating the feasibility of a "monitored" neutrino beam, in which the absolute normalization of the neutrino flux can be constrained at the 1% level. The $ν_e$ flux is determined by monitoring large-angle $e^+$ from $K_{e3}$ decays in a 40 m long instrumented decay tunnel. The $ν_μ$ flux is provided by muons produced by decays of $K$ and $π$. Being a narrow band beam ($p=8.5$ GeV/$c$ $\pm$ 10%), the transverse position of the interaction at the detector can be exploited to determine a priori the neutrino energy spectrum without relying on the final state reconstruction ("narrow band off-axis technique"). Lepton monitoring and narrow band off-axis energy reconstruction can be implemented in a single facility based on standard accelerator technologies for a new generation of high precision $ν_e$ and $ν_μ$ cross section measurements at the GeV scale and for precision searches of physics beyond the standard 3$ν$ paradigm. In 2019-2022 ENUBET has devised the first end-to-end simulation of the facility and demonstrated that the precision goals can be achieved in $\sim$ 3 years of data taking employing neutrino detectors of moderate mass (ICARUS at FNAL, ProtoDUNE at CERN). The technology of a monitored beam has been proven to be feasible and cost-effective, and the complexity does not exceed significantly the one of a conventional short-baseline beam. The Snowmass 2021 DPF Community Planning Exercise is thus timely for the consideration of monitored neutrino beams hosting the next generation of cross section experiments. The ENUBET results will play an important role in the systematic reduction programme of future long baseline experiments, thus enhancing the physics reach of DUNE and Hyper-Kamiokande. In this document, we summarize the ENUBET design, physics performance and opportunities for its implementation in a timescale comparable with DUNE.