论文标题
强大的耦合常数:最新的和未来的十年
The strong coupling constant: State of the art and the decade ahead
论文作者
论文摘要
粒子生产横截面和colter虫衰减的理论预测在很大程度上依赖于扰动量子染色体动力学(QCD)计算,以强耦合常数$α_s$的力量的扩展表示。当前$ \ MATHCAL {O}(1 \%)$在参考Z Boson质量上评估的QCD耦合的不确定性,$α_S(M_z)= 0.1179 \ pm 0.0009 $,是在当前和未来碰撞者处更精确地描述多个过程的限制因素之一。因此,降低这种不确定性是对标准模型进行精确测试以及搜索新物理学的先决条件。该报告提供了有关强耦合实验和理论研究中最先进的挑战和前景的全面摘要。 The current $α_s(m_Z)$ world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic $τ$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) $e^+e^-$, (vi) e-p, and (vii) P-P碰撞,(VIII)Quarkonia腐烂和群众。我们回顾了这七个$α_s(M_z)$提取方法的当前状态,讨论新颖的$α_s$确定,并检查用于获得世界平均值的平均方法。所讨论的每种方法都提供了所需的实验和理论发展的``愿望清单'',以实现未来十年内$α_s(M_z)$的人均精度的目标。
Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant $α_s$. The current $\mathcal{O}(1\%)$ uncertainty of the QCD coupling evaluated at the reference Z boson mass, $α_s(m_Z) = 0.1179 \pm 0.0009$, is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current $α_s(m_Z)$ world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic $τ$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) $e^+e^-$, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven $α_s(m_Z)$ extraction methods, discuss novel $α_s$ determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a ``wish list'' of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on $α_s(m_Z)$ within the next decade.