论文标题

$ \ mathfrak的顶点代数的普通模块{osp} _ {1 | 2n} $

Ordinary modules for vertex algebras of $\mathfrak{osp}_{1|2n}$

论文作者

Creutzig, Thomas, Genra, Naoki, Linshaw, Andrew

论文摘要

我们表明,仿射顶点superalgebra $ v^k(\ mathfrak {osp} _ {1 | 2n})$在equivariant $ \ mathcal $ \ mathcal w $ -algebra中嵌入$ k $ $ k $ $ k $ $ \ algebra,$ \ m mathfrak {sp} _ {2n} _ {2n} _ {2n} $ 4n $ 4n $ 4n $ 4n $ 4n $ 4n $ 4n。这有两种推论:(1)提供了一个新的证明,即对于通用$ k $,coset $ \ text {com}(v^k(\ mathfrak {sp} _ {2n}),v^k(\ mathfrak {osp} _ {osp} _ {1 | 2n}) w^\ ell(\ Mathfrak {sp} _ {2n})$ for $ \ ell = - (n+1)+\ frac {k+n+n+1} {2k+2n+1} $,(2)我们获得了普通$ v^k的分解$ v^k(\ mathfrak {sp} _ {2n})\ otimes \ mathcal w^\ ell(\ mathfrak {sp} _ {2n})$ - 模块。接下来,如果$ k $是一个可接受的水平,而$ \ ell $是$ \ mathfrak {sp} _ {2n} $的不可替代水平$ l_k(\ Mathfrak {sp} _ {2n})\ otimes {\ Mathcal W} _ {\ ell}(\ Mathfrak {sp} _ {2n})$。使用顶点超级级扩展理论,我们证明了普通$ L_K(\ Mathfrak {osp} _ {1 | 2n})$的类别 - 模块是一个半密度,刚性顶点tensor superCategory,只有许多与等量的简单对象,只有许多有限的简单对象。它等效于$ \ Mathcal w_ \ ell(\ Mathfrak {sp} _ {2n})$ - 模块的某个子类别。 Ramond Twisted模块类别也有类似的结果。由于罗伯特·麦克雷(Robert McRae)的最新定理,我们得到了推论,即普通$ l_k(\ mathfrak {sp} _ {2n})$ - 模块是刚性的。

We show that the affine vertex superalgebra $V^k(\mathfrak{osp}_{1|2n})$ at generic level $k$ embeds in the equivariant $\mathcal W$-algebra of $\mathfrak{sp}_{2n}$ times $4n$ free fermions. This has two corollaries: (1) it provides a new proof that for generic $k$, the coset $\text{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{osp}_{1|2n}))$ is isomorphic to $\mathcal W^\ell(\mathfrak{sp}_{2n})$ for $\ell = -(n+1) + \frac{k+n+1}{2k+2n+1}$, and (2) we obtain the decomposition of ordinary $V^k(\mathfrak{osp}_{1|2n})$-modules into $V^k(\mathfrak{sp}_{2n}) \otimes \mathcal W^\ell(\mathfrak{sp}_{2n})$-modules. Next, if $k$ is an admissible level and $\ell$ is a non-degenerate admissible level for $\mathfrak{sp}_{2n}$, we show that the simple algebra $L_k(\mathfrak{osp}_{1|2n})$ is an extension of the simple subalgebra $L_k(\mathfrak{sp}_{2n}) \otimes {\mathcal W}_{\ell}(\mathfrak{sp}_{2n})$. Using the theory of vertex superalgebra extensions, we prove that the category of ordinary $L_k(\mathfrak{osp}_{1|2n})$-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects. It is equivalent to a certain subcategory of $\mathcal W_\ell(\mathfrak{sp}_{2n})$-modules. A similar result also holds for the category of Ramond twisted modules. Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary $L_k(\mathfrak{sp}_{2n})$-modules are rigid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源