论文标题

多类队列的最佳入院控制,并通过状态抽象的时变到达率

Optimal Admission Control for Multiclass Queues with Time-Varying Arrival Rates via State Abstraction

论文作者

Rigter, Marc, Dervovic, Danial, Hassanzadeh, Parisa, Long, Jason, Zehtabi, Parisa, Magazzeni, Daniele

论文摘要

我们考虑了一个新颖的排队问题,决策者必须选择接受或拒绝随机到达任务中的无缓冲列表,该任务由$ n $相同的服务器处理。每个任务都有一个价格,这是一个积极的实际数字和一个班级。每类任务的价格分配和服务率不同,并且根据不源性泊松过程到达。目的是确定要接受的任务,以便在有限的视野上最大化处理的任务总价。我们将问题提出为具有混合状态空间的离散时间马尔可夫决策过程(MDP)。我们表明,最佳值函数具有特定的结构,这使我们能够精确地求解混合MDP。此外,我们证明,随着时间步长的减少,离散的时间解决方案将接近原始连续时间问题的最佳解决方案。为了提高我们对更多任务类别的方法的可伸缩性,我们提出了基于状态抽象的近似值。我们验证了合成数据的方法以及实际的财务欺诈数据集,这是该工作的激励应用。

We consider a novel queuing problem where the decision-maker must choose to accept or reject randomly arriving tasks into a no buffer queue which are processed by $N$ identical servers. Each task has a price, which is a positive real number, and a class. Each class of task has a different price distribution and service rate, and arrives according to an inhomogenous Poisson process. The objective is to decide which tasks to accept so that the total price of tasks processed is maximised over a finite horizon. We formulate the problem as a discrete time Markov Decision Process (MDP) with a hybrid state space. We show that the optimal value function has a specific structure, which enables us to solve the hybrid MDP exactly. Moreover, we prove that as the time step is reduced, the discrete time solution approaches the optimal solution to the original continuous time problem. To improve the scalability of our approach to a greater number of task classes, we present an approximation based on state abstraction. We validate our approach on synthetic data, as well as a real financial fraud data set, which is the motivating application for this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源