论文标题
四个复杂维度的因果关系
Causal and self-dual morphisms in four complex dimensions
论文作者
论文摘要
我们定义了塑性嵌入的空曲线之间的一类图,这些曲线概括了共形变换,并且可以在任何复杂的维度中定义。在四个维度中,我们还可以在自偶表面之间定义一个类似的图,该表面概括了$α$ - 平面。这些地图分别称为因果关系和自伴形态度。结果表明,在四个维度上,存在两种类型的地图的无限示例类别。
We define a class of maps between holomorphically embedded null curves which generalize conformal transformations, and can be defined in any complex dimension. In four dimensions, we can also define a similar map between self-dual surfaces, which generalize flat $α$-planes. These maps are respectively called causal and self-dual morphisms. It is shown that there exist an infinite class of non-trivial examples for both types of maps in four dimensions.