论文标题

GPV置置:通过几何学引导的投票估算类别级的对象姿势姿势估计

GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting

论文作者

Di, Yan, Zhang, Ruida, Lou, Zhiqiang, Manhardt, Fabian, Ji, Xiangyang, Navab, Nassir, Tombari, Federico

论文摘要

尽管6D对象姿势估计最近已经取得了巨大的飞跃,但大多数方法仍然只能处理一个或少数几个不同的对象,从而限制其应用程序。为了解决这个问题,最近已经对类别级对象姿势估计进行了修改,该估计旨在预测从给定的一组对象类中的6D姿势以及以前看不见的实例的3D度量大小。但是,由于严重的类内形状变化,这是一项更具挑战性的任务。为了解决这个问题,我们提出了GPV置态,这是一个新颖的类别类别姿势估计的新型框架,利用几何见解来增强对类别级别姿势敏感特征的学习。首先,我们引入了置信驱动的旋转表示,该表示允许相关旋转矩阵的几何学回收。其次,我们为3D对象边界框的强大检索提出了一个新颖的几何学引导范围投票范式。最后,利用这些不同的输出流,我们可以执行几种几何一致性项,进一步提高性能,尤其是对于非对称类别。 GPV货物在共同的公共基准测试的最先进竞争者中产生了优越的成果,同时几乎以20 fps的速度实现了实时推理速度。

While 6D object pose estimation has recently made a huge leap forward, most methods can still only handle a single or a handful of different objects, which limits their applications. To circumvent this problem, category-level object pose estimation has recently been revamped, which aims at predicting the 6D pose as well as the 3D metric size for previously unseen instances from a given set of object classes. This is, however, a much more challenging task due to severe intra-class shape variations. To address this issue, we propose GPV-Pose, a novel framework for robust category-level pose estimation, harnessing geometric insights to enhance the learning of category-level pose-sensitive features. First, we introduce a decoupled confidence-driven rotation representation, which allows geometry-aware recovery of the associated rotation matrix. Second, we propose a novel geometry-guided point-wise voting paradigm for robust retrieval of the 3D object bounding box. Finally, leveraging these different output streams, we can enforce several geometric consistency terms, further increasing performance, especially for non-symmetric categories. GPV-Pose produces superior results to state-of-the-art competitors on common public benchmarks, whilst almost achieving real-time inference speed at 20 FPS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源