论文标题

在过期的人造肾脏中限制Eutectic Gallium凹膜(Egain),以揭示纳米孔导电线

Confining Eutectic Gallium Indium (eGaIn) in Expired Artificial Kidneys to Unveil Nanoporous Conductive Wires

论文作者

Monwar, Momena, Licup, Gerra, Khan, M. Rashed

论文摘要

纳米多孔膜对药物递送1,离子运输2,微/纳米流体学3,Molecular Sensing4和分离科学5。人造肾脏,也称为透析器,拒绝血液中的病原体和其他不需要的物质,利用数百种软和纳米孔聚合物微管,并逐渐成为环境的负担,而全球透析患者数量增加。我们证明了利用从已过期和未使用的人造肾脏收集的空多硫酮微管(也称为医疗废物)中的空多硫酮微管制造的纳米孔导电线。向二十岁的透析层的微管注入液体,高电导和室温液体合金(Eutectic Gallium intectium indim-gain,75%,25%,25%),我们透露了一类新的纳米孔和导电功能材料。这些导电纤维会升级医疗废物,不需要昂贵且常规的制造工艺,并且由于纳米粉的纳米粉(即,nanoopores)的EGAIN的天然表面氧化物(即,Egain)的含量氧化物(即,氧化物,GA2O3),仍然提供典型的金属氧化物/金属框架。我们利用这些新材料来感知和区分脱位水,1m盐酸(HCl)和95%乙醇(ETOH)的微氧化物体积,利用其电特征。这类新的软纳米材料有可能成为下一代生物医学,生物电子,纳米电子和传感器设备的范式转移平台。

Nanoporous membranes have gained considerable interest in drug delivery1, ion transportation2, micro/nanofluidics3, molecular sensing4, and separation science5. Artificial kidneys, also known as dialyzers, reject pathogens and other unwanted substances from the blood, utilize hundreds of soft and nanoporous polymeric microtubes, and slowly become a burden to the environment with the growing number of dialysis patients worldwide. We demonstrate the fabrication of nanoporous conductive wires utilizing empty polysulfone microtubes collected from expired and unused artificial kidneys, also known as medical wastes. Injecting a fluidic, highly conductive, and room temperature liquid alloy (eutectic gallium indium-eGaIn$_6$, 75% Ga, 25% In) into microtubes of a twenty years old dialyzer, here, we have revealed a new class of nanoporous and conductive functional materials. These conductive fibers upcycle a medical waste, do not require expensive and conventional fabrication processes, and still provide the quintessential metal-oxide/metal framework due to the presence of the native surface oxide (i.e., Gallium Oxide, Ga2O3) of eGaIn at the nanoconfinement (i.e., nanopores) for nano/biosensing. We harnessed these new materials to sense and differentiate microliter volumes of deionized (DI) water, 1M hydrochloric acid (HCl), and 95% ethanol (EtOH), leveraging their electrical signatures. This new class of soft nanomaterials has the potential to become the paradigm-shift platforms for the next-generation of biomedical, bioelectronics, nanoelectronics, and sensor devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源