论文标题
轴心星星在仙女座星系中与星星碰撞的辐射爆发
Radiation Burst by Axion Star Collision with Star in the Andromeda Galaxy
论文作者
论文摘要
斧头是宇宙中暗物质的有前途的候选人。一小部分暗物质轴可能会形成半径$ \ sim 10^2 $ km的轴心星。我们表明,轴恒星在仙女座星系中与K和M类型主序列碰撞碰撞爆发。发射出现在恒星的大气中,由于轴恒星的振荡电场引起的电子相干振荡。电场是在磁场$ b $下产生的。我们估计辐射$ \ sim 1.6 \ times 10^{ - 3} \ mbox {jy}的通量密度(10^{ - 12} m _ {\ odot}/m_a)^2(10^{ - 5} \ mbox {ev}/m_a)^3(b/10^2 \ mbox {g})^2 \ sqrt {3 \ sqrt {3 \ times10^3 \ times10^3 \ mbox per 0.06/\ mbox {hour} \,(10^{ - 12} m _ {\ odot}/m_a)$在银河系中,其中$ m_a $($ m_a $)表示轴心星(axion)的质量(axion)和$ t $ t $具有电子的温度。我们假设具有$ b \ sim 10^{2} $ g和半径$ \ sim 3.5 \ sim 3.5 \ times10^{5} $ km的星星的数字$ 10^{11} $。我们还假设暗物质的一半是由轴心恒星组成的。我们表明,辐射爆发的发射仅在血浆频率$ m_p \ simeq m_a $的大气中产生。爆发的持续时间持续使用轴心星以$ m_p \ simeq m_a $通过区域。它将长于$ 1 $秒。
Axion is a promising candidate of dark matter in the universe. A fraction of dark matter axion may forms axion star with radius $\sim 10^2$km. We show that the axion star emits radiation burst by the collision with K and M types main sequence star in the Andromeda Galaxy. The emission arises in the atmosphere of the star, in which electrons coherently oscillate due to oscillating electric field of the axion star. The electric field is produced under magnetic field $B$ of the star. We estimate the flux density of the radiation $\sim 1.6\times 10^{-3}\mbox{Jy} (10^{-12}M_{\odot}/M_a)^2(10^{-5}\mbox{eV}/m_a)^3(B/10^2\mbox{G})^2\sqrt{3\times10^3\mbox{K}/T}$ and the rate of the collision per hour $\sim 0.06/\mbox{hour}\,(10^{-12}M_{\odot}/M_a)$ in the galaxy, where $M_a$ ( $m_a$ ) denotes the mass of axion star ( axion ) and $T$ does temperature of the electrons. We assume the number $10^{11}$ of the stars with $B\sim 10^{2}$G and radius $\sim 3.5\times10^{5}$km in the galaxy. We also assume that a half of the dark matter is composed of axion star. We show that the emission of the radiation burst only arises in the atmosphere in which the plasma frequency $m_p\simeq m_a$. The duration of the burst lasts for the period which it takes the axion star to pass the region with $m_p\simeq m_a$. It would be longer than $1$ second.