论文标题
部分可观测时空混沌系统的无模型预测
Measurement induced entanglement transition in two dimensional shallow circuit
论文作者
论文摘要
我们准备了由(1)两Q QU CZ门的一层或(2)几层两Q Q Qubit的随机Clifford门组成的浅电路产生的二维状态。测量所有散装量子位后,我们研究了一维边界上其余Qubits的纠缠结构。在第一个模型中,我们观察到,批量X和Z测量之间的竞争可能会导致纠缠量的体积法阶段与分离的区域定律阶段之间的纠缠相变。我们从数值上评估关键指数,并将这一想法概括为大于2的局部希尔伯特空间维度的其他QUDIT系统。在第二个模型中,我们通过改变每一层中的两量栅极的密度来观察纠缠过渡。我们在由随机HAAR大门组成的类似浅回路中以随机粘合模型来解释这种过渡。
We prepare two dimensional states generated by shallow circuits composed of (1) one layer of two-qubit CZ gate or (2) a few layers of two-qubit random Clifford gate. After measuring all of the bulk qubits, we study the entanglement structure of the remaining qubits on the one dimensional boundary. In the first model, we observe that the competition between the bulk X and Z measurements can lead to an entanglement phase transition between an entangled volume law phase and a disentangled area law phase. We numerically evaluate the critical exponents and generalize this idea to other qudit systems with local Hilbert space dimension larger than 2. In the second model, we observe the entanglement transition by varying the density of the two-qubit gate in each layer. We give an interpretation of this transition in terms of random bond Ising model in a similar shallow circuit composed of random Haar gates.