论文标题

从一些可见的过渡统计数据中学到什么?

What to learn from a few visible transitions' statistics?

论文作者

Harunari, Pedro E., Dutta, Annwesha, Polettini, Matteo, Roldán, Édgar

论文摘要

解释从系统受到噪声的部分信息是科学学科的关键问题。理论框架通常集中于由于物理系统内部状态而产生的变量的动力学。但是,大多数实验设备只能检测到一组转变,而内部状态则无法访问。在这里,我们考虑了一个观察者,他记录了系统进行的一个或几个过渡的发生时间序列,假设其基本动力是马尔可夫人。我们提出了一个问题,即如何使用过渡信息来推断动力学,热力学和生化特性。首先,详细说明了第一学期时间技术,我们为连续过渡的概率及其之间的时间提供了分析表达式。其次,我们为熵生产率提供了一个下限,该距离等于两个非负贡献的总和,一个是由于过渡统计数据,第二个是由于过渡时间的统计数据。我们还表明,当仅测量一个电流时,即使在没有净电流的情况下,我们的估计仍然可以检测到不可逆性。我们说明了驱动蛋白和动力蛋白分子电动机的实验验证生物物理模型的开发框架,以及用于模板定向聚合的最小模型。我们的结果表明,虽然熵产生在相同类型的两个连续过渡的统计数据中需要进行,但两个不同连续的过渡的统计数据可以探测分子运动运动中一种潜在疾病的存在。总之,我们的结果突出了从热力学数量到马尔可夫过程的网络流行特性的推理力量。

Interpreting partial information collected from systems subject to noise is a key problem across scientific disciplines. Theoretical frameworks often focus on the dynamics of variables that result from coarse-graining the internal states of a physical system. However, most experimental apparatuses can only detect a partial set of transitions, while internal states are inaccessible. Here, we consider an observer who records a time series of occurrences of one or several transitions performed by a system, under the assumption that its underlying dynamics is Markovian. We pose the question of how one can use the transitions' information to make inferences of dynamical, thermodynamical, and biochemical properties. First, elaborating on first-passage time techniques, we derive analytical expressions for the probabilities of consecutive transitions and the time elapsed between them. Second, we derive a lower bound for the entropy production rate that equals the sum of two non-negative contributions, one due to the statistics of transitions and a second due to the statistics of inter-transition times. We also show that when only one current is measured, our estimate still detects irreversibility even in the absence of net currents. We illustrate the developed framework in experimentally-validated biophysical models of kinesin and dynein molecular motors, and in a minimal model for template-directed polymerization. Our results reveal that while entropy production is entailed in the statistics of two successive transitions of the same type, the statistics of two different successive transitions can probe the existence of an underlying disorder in the motion of a molecular motor. Taken all together, our results highlight the power of inference from transition statistics ranging from thermodynamic quantities to network-topology properties of Markov processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源