论文标题

海面重建的最小纠正三角形

Minimum-Error Triangulations for Sea Surface Reconstruction

论文作者

Arutyunova, Anna, Driemel, Anne, Haunert, Jan-Henrik, Haverkort, Herman, Kusche, Jürgen, Langetepe, Elmar, Mayer, Philip, Mutzel, Petra, Röglin, Heiko

论文摘要

我们将最新的计算几何方法应用于从潮汐仪记录中重建时变海面的问题。我们的作品是基于Nitzke等人最近的一篇文章(Computers \&Geosciences,157:104920,2021),他们建议学习一组给定的潮汐量规站的三角调节$ D $。目的是最大程度地减少$ d $引起的分段线性表面的不合适,以通过卫星高度计获取的参考表面。作者将搜索限制为K级Delaunay($ K $ -OD)三角剖分,并使用了整数线性程序来解决所得的优化问题。 用几何术语来说,我们问题的输入由$ \ mathbb {r}^2 $中的两组积分组成,具有高程:一个$ \ mathcal {s} $,将是三角形的;直观地,我们将三角剖分的误差定义为$ \ MATHCAL {R} $中一个点的平均垂直距离到三角形的表面,该表面是通过在每个三角形中线性地插入$ \ Mathcal {s} $来获得的。我们的目标是找到$ \ Mathcal {s} $的三角剖分,相对于$ \ Mathcal {r} $,该{s} $。 在我们的工作中,我们证明了最小纠纷三角剖分问题是NP-固定的,除非$ p = np $,否则在多项式时间内不能在任何乘法因子中近似。同时,我们表明我们应用程序中发生的问题实例(考虑来自全球数百个潮汐量规站的海平面数据)可以使用动态编程相对较快地求解,而当限制为$ k $ -od的三角形以$ k \ le 7 $。特别是,可以在几秒钟内解决所谓的$ k $ -od固定边图的连接组件数量的实例。

We apply state-of-the-art computational geometry methods to the problem of reconstructing a time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et al.~(Computers \& Geosciences, 157:104920, 2021) who have suggested to learn a triangulation $D$ of a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear surface induced by $D$ to a reference surface that has been acquired with satellite altimetry. The authors restricted their search to k-order Delaunay ($k$-OD) triangulations and used an integer linear program in order to solve the resulting optimization problem. In geometric terms, the input to our problem consists of two sets of points in $\mathbb{R}^2$ with elevations: a set $\mathcal{S}$ that is to be triangulated, and a set $\mathcal{R}$ of reference points. Intuitively, we define the error of a triangulation as the average vertical distance of a point in $\mathcal{R}$ to the triangulated surface that is obtained by interpolating elevations of $\mathcal{S}$ linearly in each triangle. Our goal is to find the triangulation of $\mathcal{S}$ that has minimum error with respect to $\mathcal{R}$. In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be approximated within any multiplicative factor in polynomial time unless $P=NP$. At the same time we show that the problem instances that occur in our application (considering sea level data from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic programming when restricted to $k$-OD triangulations for $k\le 7$. In particular, instances for which the number of connected components of the so-called $k$-OD fixed-edge graph is small can be solved within few seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源