论文标题
随机立方平面图的缩放限
The scaling limit of random cubic planar graphs
论文作者
论文摘要
我们研究随机简单连接的立方平面图$ \ MATHSF {C} _n $,带有偶数$ n $的顶点。我们表明,布朗尼地图以gromov-hausdorff- $ \ mathsf {c} _n $为$ n \ in 2 \ ndn $的$ n \ as $ n \ in Infinity ty Infination to reckal距离,在$γn^{ - 1/4} $上恢复距离后,$ n \ in 2 \ ndn $趋于无限。
We study the random simple connected cubic planar graph $\mathsf{C}_n$ with an even number $n$ of vertices. We show that the Brownian map arises as Gromov--Hausdorff--Prokhorov scaling limit of $\mathsf{C}_n$ as $n \in 2 \ndN$ tends to infinity, after rescaling distances by $γn^{-1/4} $ for a specific constant $γ>0$.