论文标题
通过与接触动态运动原语的增强学习通过增强学习的阻抗适应
Impedance Adaptation by Reinforcement Learning with Contact Dynamic Movement Primitives
论文作者
论文摘要
动态运动原语(DMP)允许将复杂的位置轨迹有效地证明向机器人。在接触率丰富的任务中,仅靠位置轨迹在接触几何形状的变化中可能不安全或不强大,DMP已扩展到包括力轨迹。但是,不同的任务阶段或自由度可能需要跟踪位置或力量 - 例如,一旦进行接触,在接触方向上跟踪力示范轨迹可能更为重要。机器人阻抗在遵循位置或力参考轨迹之间平衡,高刚度轨迹位置和较低的刚度轨道轨迹。本文建议使用DMP从演示中学习和强迫轨迹,然后通过在线培训的高级控制策略在线适应阻抗参数。这允许通过DMP进行一次镜头演示,并从阻抗适应中提高了鲁棒性和性能。该方法在孔洞和粘合条应用程序任务上进行了验证。
Dynamic movement primitives (DMPs) allow complex position trajectories to be efficiently demonstrated to a robot. In contact-rich tasks, where position trajectories alone may not be safe or robust over variation in contact geometry, DMPs have been extended to include force trajectories. However, different task phases or degrees of freedom may require the tracking of either position or force -- e.g., once contact is made, it may be more important to track the force demonstration trajectory in the contact direction. The robot impedance balances between following a position or force reference trajectory, where a high stiffness tracks position and a low stiffness tracks force. This paper proposes using DMPs to learn position and force trajectories from demonstrations, then adapting the impedance parameters online with a higher-level control policy trained by reinforcement learning. This allows one-shot demonstration of the task with DMPs, and improved robustness and performance from the impedance adaptation. The approach is validated on peg-in-hole and adhesive strip application tasks.