论文标题

通过主动数据采样的沟通有效的联合蒸馏

Communication-Efficient Federated Distillation with Active Data Sampling

论文作者

Liu, Lumin, Zhang, Jun, Song, S. H., Letaief, Khaled B.

论文摘要

联合学习(FL)是一个有希望的范式,可从分布式数据中启用隐私的深度学习。以前的大多数工作都是基于联合平均值(FedAvg)的,但是,这面临着几个关键问题,包括高度沟通开销和处理异质模型体系结构的困难。联合蒸馏(FD)是最近提出的替代方案,它可以使沟通效率和健壮的FL实现与FedAvg相比,可以降低通信开销的数量级,并且具有灵活性以处理客户的异质模型。但是,到目前为止,基于FD的方法还没有统一的算法框架或理论分析。在本文中,我们首先提出了用于FD的通用元叠层,并通过经验实验研究了关键参数的影响。然后,我们从理论上验证了经验观察。基于经验结果和理论,我们提出了一种具有主动数据采样的通信效率FD算法,以提高模型性能并减少开销。基准数据集上的经验模拟将证明我们提出的算法有效地降低了沟通开销,同时达到令人满意的性能。

Federated learning (FL) is a promising paradigm to enable privacy-preserving deep learning from distributed data. Most previous works are based on federated average (FedAvg), which, however, faces several critical issues, including a high communication overhead and the difficulty in dealing with heterogeneous model architectures. Federated Distillation (FD) is a recently proposed alternative to enable communication-efficient and robust FL, which achieves orders of magnitude reduction of the communication overhead compared with FedAvg and is flexible to handle heterogeneous models at the clients. However, so far there is no unified algorithmic framework or theoretical analysis for FD-based methods. In this paper, we first present a generic meta-algorithm for FD and investigate the influence of key parameters through empirical experiments. Then, we verify the empirical observations theoretically. Based on the empirical results and theory, we propose a communication-efficient FD algorithm with active data sampling to improve the model performance and reduce the communication overhead. Empirical simulations on benchmark datasets will demonstrate that our proposed algorithm effectively and significantly reduces the communication overhead while achieving a satisfactory performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源