论文标题

抛物线连接的模量空间上的线束

Line bundles on the moduli space of parabolic connections over a compact Riemann surface

论文作者

Singh, Anoop

论文摘要

令$ x $为$ g \ geq 3 $和$ s $的紧凑型Riemann Surface $ x $。令$ξ$修复了一个超过$ x $ $ d $的全态线捆绑包。令$ \ MATHCAL {M} _ {PC}(R,D,α)$(分别分别为$ \ Mathcal {M} _ {pc}(r,α,α,ξ)$)表示等级$ r $的寄生虫连接的Moduli空间,$ r $,d $ d $ d $ d $ d $ d $ $ d $ $ d $ $ d $ n $ n $ n $(分别)(分别)抛物线点$ s \ subset x $。 令$ \ MATHCAL {M}'_ {PC}(r,d,α)$(分别分别为$ \ Mathcal {M}'_ {PC}(R,r,α,ξ)$)为Zariski密集的开放式子集$ \ Mathcal {m} $ \ MATHCAL {M} _ {PC}(R,α,ξ)$)参数所有抛物线连接,以使基础抛物线束稳定。我们表明,模量空间$ \ mathcal {m}'_ {pc}(r,d,α)$和$ \ mathcal {m}'_ {pc}(r,α,α,ξ)$ by Smooth Divisors by Smooth Divisors。 我们描述了这些分隔线在无穷大的数字有效性。我们确定Moduli空间的PICARD组$ \ MATHCAL {M} _ {PC}(r,d,d,α)$和$ \ MATHCAL {M} _ {PC}(R,α,ξ)$。令$ \ MATHCAL {C}(L)$表示抛物线捆绑包的Moduli Space $ \ Mathcal {M}(r,d,d,α)$上的充分线束$ l $上的Holomorthic Connections的空间。我们表明,$ \ Mathcal {C}(L)$不接受任何非稳定代数函数。

Let $X$ be a compact Riemann surface of genus $g \geq 3$ and $S$ a finite subset of $X$. Let $ξ$ be fixed a holomorphic line bundle over $X$ of degree $d$. Let $\mathcal{M}_{pc}(r, d, α)$ (respectively, $\mathcal{M}_{pc}(r, α, ξ)$ ) denote the moduli space of parabolic connections of rank $r$, degree $d$ and full flag rational generic weight system $α$, (respectively, with the fixed determinant $ξ$) singular over the parabolic points $S \subset X$. Let $\mathcal{M}'_{pc}(r, d, α)$ (respectively, $\mathcal{M}'_{pc}(r, α, ξ)$) be the Zariski dense open subset of $\mathcal{M}_{pc}(r, d, α)$ (respectively, $\mathcal{M}_{pc}(r, α, ξ)$ )parametrizing all parabolic connections such that the underlying parabolic bundle is stable. We show that there is a natural compactification of the moduli spaces $\mathcal{M}'_{pc}(r, d, α)$, and $\mathcal{M}'_{pc}(r, α, ξ)$ by smooth divisors. We describe the numerically effectiveness of these divisors at infinity. We determine the Picard group of the moduli spaces $\mathcal{M}_{pc}(r, d, α)$, and $\mathcal{M}_{pc}(r, α, ξ)$. Let $\mathcal{C}(L)$ denote the space of holomorphic connections on an ample line bundle $L$ over the moduli space $\mathcal{M}(r, d, α)$ of parabolic bundles. We show that $\mathcal{C}(L)$ does not admit any non-constant algebraic function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源