论文标题

在投影域中通过自学学习的学习低剂量CT重建

Low-dose CT reconstruction by self-supervised learning in the projection domain

论文作者

Zhou, Long, Wang, Xiaozhuang, Hou, Min, Li, Ping, Fu, Chunlong, Ren, Yanjun, Shao, Tingting, Hu, Xi, Sun, Jihong, Ye, Hongwei

论文摘要

为了最大程度地减少对患者的过度X射线辐射给药,低剂量计算机断层扫描(LDCT)已成为放射学的独特趋势。但是,尽管降低辐射剂量会降低患者的风险,但它也增加了噪声和伪影,损害了图像质量和临床诊断。在大多数监督的学习方法中,需要配对的CT图像,但是这种图像不太可能在诊所中提供。我们提出了一个自我监督的学习模型(噪声2预测),该模型充分利用了原始投影图像,以减少噪声并提高重建的LDCT图像的质量。与现有的自我监督算法不同,该提出的方法仅需要嘈杂的CT投影图像并通过利用附近投影图像之间的相关性来减少噪声。我们使用临床数据训练和测试了该模型,定量和定性结果表明,我们的模型可以有效地减少LDCT图像噪声,同时还可以大大删除LDCT图像中的伪影。

In the intention of minimizing excessive X-ray radiation administration to patients, low-dose computed tomography (LDCT) has become a distinct trend in radiology. However, while lowering the radiation dose reduces the risk to the patient, it also increases noise and artifacts, compromising image quality and clinical diagnosis. In most supervised learning methods, paired CT images are required, but such images are unlikely to be available in the clinic. We present a self-supervised learning model (Noise2Projection) that fully exploits the raw projection images to reduce noise and improve the quality of reconstructed LDCT images. Unlike existing self-supervised algorithms, the proposed method only requires noisy CT projection images and reduces noise by exploiting the correlation between nearby projection images. We trained and tested the model using clinical data and the quantitative and qualitative results suggest that our model can effectively reduce LDCT image noise while also drastically removing artifacts in LDCT images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源