论文标题
OptIDDM(集成差异动态显微镜的光学镊子)映射聚合物混合物和复合材料中非线性应力的时空传播
OpTiDDM (Optical Tweezers integrating Differential Dynamic Microscopy) maps the spatiotemporal propagation of nonlinear stresses in polymer blends and composites
论文作者
论文摘要
局部应力如何通过聚合物流体传播,更普遍地,大分子动态如何产生粘弹性是对广泛的科学和工业领域至关重要的开放问题。在这里,为了明确地将聚合物动力学连接到迫使响应,并在大分子材料中绘制应力传播,我们提出了一个强大的方法 - 光学镊子,该动力学会整合差异动态显微镜(OPTIDMM) - 同时施加了局部条流,测量电阻力,并分析周围光合物的运动。我们与环和线性聚合物(DNA)的混合物及其复合材料与刚性聚合物(微管)的测量结果令人惊讶的谐振反应,其中当应变速率与范围可比时,仿射比对,超产物和弹性记忆被最大化。微管抑制了这种共振,同时,由于聚合物沿着应变路径的堆积,伸展和流动的不同程度,并大大增加了弹性和记忆力,并在构型上消散了应力。从更广泛的角度来看,OptidDM提供的力量和动力学的丰富多尺度耦合赋予其跨学科用途,以阐明非平凡现象,从而雕刻了对商业应用和细胞力学相似的构图应力传播动力学的批判性动态。
How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map stress propagation in macromolecular materials, we present a powerful approach-Optical Tweezers integrating Differential Dynamic Microscopy (OpTiDMM)-that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover a surprising resonant response, in which affine alignment, superdiffusivity, and elastic memory are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic force and memory, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally dissipate stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics-critical to commercial applications and cell mechanics alike.