论文标题
超导量子的准粒子中毒来自成对的光子的共振吸收
Quasiparticle Poisoning of Superconducting Qubits from Resonant Absorption of Pair-breaking Photons
论文作者
论文摘要
理想的超导体为量子计算机的精致状态提供了原始的环境:由于激发存在能量差距,因此没有旋转量具可以相互作用的虚假模式,从而导致量子状态的不可逆衰变。然而,实际上,即使在超低温度下,也存在高密度的激发。这些被称为准颗粒。观察到的准粒子密度为1〜 $μ$ M $^{ - 3} $,比理论预期的平衡密度大数十数量级。非平衡的准粒子从量子模式中提取能量,并引起量子偏移电荷的离散变化,这是一种潜在的脱去源。在这里,我们表明,超导Qubits中准粒子中毒的主要机制是直接吸收量子连接处的高能量光子。我们使用基于约瑟夫森连接的光子源来控制具有毫米波辐射的剂量Qubit电路,我们使用干涉量量子门序列来重建Qubit岛上的电荷奇偶校验。我们发现,量子量本身的结构充当了毫米波辐射的谐振天线,为光子产生准片段激发提供了有效的路径。对这种物理学的深刻理解将为实现下一代超导量子的实现铺平道路,这些量子量很强,这些量子量很强,可以抵抗准二粒中毒,并可以使一类新的量子传感器用于暗物质检测。
The ideal superconductor provides a pristine environment for the delicate states of a quantum computer: because there is an energy gap to excitations, there are no spurious modes with which the qubits can interact, causing irreversible decay of the quantum state. As a practical matter, however, there exists a high density of excitations out of the superconducting ground state even at ultralow temperature; these are known as quasiparticles. Observed quasiparticle densities are of order 1~$μ$m$^{-3}$, tens of orders of magnitude larger than the equilibrium density expected from theory. Nonequilibrium quasiparticles extract energy from the qubit mode and induce discrete changes in qubit offset charge, a potential source of dephasing. Here we show that a dominant mechanism for quasiparticle poisoning in superconducting qubits is direct absorption of high-energy photons at the qubit junction. We use a Josephson junction-based photon source to controllably dose qubit circuits with millimeter-wave radiation, and we use an interferometric quantum gate sequence to reconstruct the charge parity on the qubit island. We find that the structure of the qubit itself acts as a resonant antenna for millimeter-wave radiation, providing an efficient path for photons to generate quasiparticle excitations. A deep understanding of this physics will pave the way to realization of next-generation superconducting qubits that are robust against quasiparticle poisoning and could enable a new class of quantum sensors for dark matter detection.