论文标题

回归蒙特卡洛进行冲动控制

Regression Monte Carlo for Impulse Control

论文作者

Ludkovski, Mike

论文摘要

我开发了一种数值算法,以回归蒙特卡洛的精神来进行随机冲动控制,以最佳停止。该方法包括生成持续功能的统计替代物(又称功能近似器)。替代物是通过模拟状态轨迹的经验回归递归训练的。同时,使用相同的替代物来学习表征最佳脉冲量的干预功能。我讨论了针对此任务的适当替代类型,以及培训集的选择。森林旋转和不可逆投资的案例研究说明了数值方案,并突出了其灵活性和可扩展性。 \ texttt {r}中的实现作为在GitHub上发布的公开软件包。

I develop a numerical algorithm for stochastic impulse control in the spirit of Regression Monte Carlo for optimal stopping. The approach consists in generating statistical surrogates (aka functional approximators) for the continuation function. The surrogates are recursively trained by empirical regression over simulated state trajectories. In parallel, the same surrogates are used to learn the intervention function characterizing the optimal impulse amounts. I discuss appropriate surrogate types for this task, as well as the choice of training sets. Case studies from forest rotation and irreversible investment illustrate the numerical scheme and highlight its flexibility and extensibility. Implementation in \texttt{R} is provided as a publicly available package posted on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源