论文标题
柠檬台球的同质和杂斜交集
Homoclinic and heteroclinic intersections for lemon billiards
论文作者
论文摘要
我们研究对称柠檬表$ \ Mathcal {q}(b)$上的动力台球,其中$ \ Mathcal {q}(b)$是两个单位磁盘与中心距离$ b $的交点。我们表明存在$δ_0> 0 $,因此对于所有$ b \ in(1.5,1.5+δ_0)$(可能是离散子集除外),柠檬表$ \ Mathcal {q}(Q}(b)$ foriard map $ f_b $ f_b $承认交叉横穿同源物和异质层互动。特别是,这种柠檬台球具有积极的拓扑熵。
We study the dynamical billiards on a symmetric lemon table $\mathcal{Q}(b)$, where $\mathcal{Q}(b)$ is the intersection of two unit disks with center distance $b$. We show that there exists $δ_0>0$ such that for all $b\in(1.5, 1.5+δ_0)$ (except possibly a discrete subset), the billiard map $F_b$ on the lemon table $\mathcal{Q}(b)$ admits crossing homoclinic and heteroclinic intersections. In particular, such lemon billiards have positive topological entropy.