论文标题

使用集成的嵌套laplace近似值的多元纵向和生存数据的联合模型快速而灵活的推断

Fast and flexible inference for joint models of multivariate longitudinal and survival data using Integrated Nested Laplace Approximations

论文作者

Rustand, Denis, van Niekerk, Janet, Krainski, Elias Teixeira, Rue, Håvard, Proust-Lima, Cécile

论文摘要

建模纵向和生存数据共同提供了许多优势,例如解决纵向过程中的测量误差和缺少数据,理解和量化纵向标记和生存事件之间的关联,并根据纵向标记物进行事件的风险。联合模型涉及多个子模型(每个纵向/生存结果)通常通过相关或共同的随机效应连接在一起。它们的估计在计算上是昂贵的(尤其是由于随机效应分布的多维整合),因此推理方法变得迅速棘手,并将关节模型的应用限制为少量的纵向标记和/或随机效应。我们引入了基于R包R-Inla中实现的集成嵌套Laplace近似算法的贝叶斯近似,以减轻计算负担,并允许估计具有较少限制的多元关节模型。我们的仿真研究表明,与替代性估计策略相比,R-INLA大大减少了参数估计的计算时间和可变性。我们进一步应用方法来分析5个纵向标记(3个连续,1个计数,1个二元和16个随机效应),以及对原发性胆道炎的临床试验中的死亡和移植风险。 R-Inla提供了一种快速可靠的推理技术,用于将联合模型应用于健康研究中遇到的复杂多元数据。

Modeling longitudinal and survival data jointly offers many advantages such as addressing measurement error and missing data in the longitudinal processes, understanding and quantifying the association between the longitudinal markers and the survival events and predicting the risk of events based on the longitudinal markers. A joint model involves multiple submodels (one for each longitudinal/survival outcome) usually linked together through correlated or shared random effects. Their estimation is computationally expensive (particularly due to a multidimensional integration of the likelihood over the random effects distribution) so that inference methods become rapidly intractable, and restricts applications of joint models to a small number of longitudinal markers and/or random effects. We introduce a Bayesian approximation based on the Integrated Nested Laplace Approximation algorithm implemented in the R package R-INLA to alleviate the computational burden and allow the estimation of multivariate joint models with fewer restrictions. Our simulation studies show that R-INLA substantially reduces the computation time and the variability of the parameter estimates compared to alternative estimation strategies. We further apply the methodology to analyze 5 longitudinal markers (3 continuous, 1 count, 1 binary, and 16 random effects) and competing risks of death and transplantation in a clinical trial on primary biliary cholangitis. R-INLA provides a fast and reliable inference technique for applying joint models to the complex multivariate data encountered in health research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源