论文标题

Si/Sige双量子点的微波频率扫描门显微镜

Microwave-frequency scanning gate microscopy of a Si/SiGe double quantum dot

论文作者

Denisov, Artem O., Oh, Seong W., Fuchs, Gordian, Mills, Adam R., Chen, Pengcheng, Anderson, Christopher R., Gyure, Mark F., Barnard, Arthur W., Petta, Jason R.

论文摘要

常规的量子传输方法可以在量子点中提供有关自旋,轨道和山谷状态的定量信息,但通常缺乏空间分辨率。另一方面,扫描隧道显微镜提供了精美的空间分辨率,可以对局部电子密度进行扫描,但通常以速度为代价。致力于将扫描探针显微镜的空间分辨率和能量灵敏度与微波测量速度相结合,我们将金属探针尖端与与局部电荷检测器集成的SI/SIGE双量子点相结合。我们首先证明可以使用DC偏置的尖端来改变双点的电荷占用率。然后,我们通过扫描尖端应用微波激发,以在双点中驱动光子辅助的隧道过渡。我们从光子辅助隧穿共振条件的频率和失谐依赖性中推断出双点能级图。这些测量值使我们能够解决$ \ sim $ 65 $ $ $ EV激发态,这是一种与Si/Sige中典型的山谷分裂一致的能量尺度。这种方法的未来扩展可能允许在SI设备中的山谷拆分进行空间映射,这对于基于自旋的量子处理器至关重要。

Conventional quantum transport methods can provide quantitative information on spin, orbital, and valley states in quantum dots, but often lack spatial resolution. Scanning tunneling microscopy, on the other hand, provides exquisite spatial resolution of the local electronic density of states, but often at the expense of speed. Working to combine the spatial resolution and energy sensitivity of scanning probe microscopy with the speed of microwave measurements, we couple a metallic probe tip to a Si/SiGe double quantum dot that is integrated with a local charge detector. We first demonstrate that a dc-biased tip can be used to change the charge occupancy of the double dot. We then apply microwave excitation through the scanning tip to drive photon-assisted tunneling transitions in the double dot. We infer the double dot energy level diagram from the frequency and detuning dependence of the photon-assisted tunneling resonance condition. These measurements allow us to resolve $\sim$65 $μ$eV excited states, an energy scale consistent with typical valley splittings in Si/SiGe. Future extensions of this approach may allow spatial mapping of the valley splitting in Si devices, which is of fundamental importance for spin-based quantum processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源