论文标题

具有基于功能的率延伸优化的机器的视频编码

Video Coding for Machines with Feature-Based Rate-Distortion Optimization

论文作者

Fischer, Kristian, Brand, Fabian, Herglotz, Christian, Kaup, André

论文摘要

通过为最终人类观察者提供一定质量,可以优化常见的最新视频编解码器,以提供低比特率,这是通过率延伸优化(RDO)实现的。但是,随着神经网络解决计算机视觉任务的稳定改善,人类不再观察到越来越多的多媒体数据,而是通过神经网络直接分析的。在本文中,我们提出了一个基于标准功能的RDO(FRDO),旨在提高编码性能,当时由神经网络分析了机器场景的视频编码中的神经网络时。在这个程度上,我们替换了VTM-8.0的常规RDO中基于像素的失真指标,其在神经网络的第一层创建的特征空间中计算出的失真指标。在几个测试中,通过分割网络掩盖R-CNN和来自CityScapes数据集的单个图像,我们将提出的FRDO及其混合版本HFRDO与特征空间中的不同失真度量与常规RDO进行了比较。使用HFRDO,与VTM-8.0实施相比,可以节省高达5.49%的比特率,以BjøntegaardDelta速率和使用加权平均精度作为质量度量标准。此外,与常规VTM相比,允许编码器改变量化参数会导致编码为9.95%的编码增长。

Common state-of-the-art video codecs are optimized to deliver a low bitrate by providing a certain quality for the final human observer, which is achieved by rate-distortion optimization (RDO). But, with the steady improvement of neural networks solving computer vision tasks, more and more multimedia data is not observed by humans anymore, but directly analyzed by neural networks. In this paper, we propose a standard-compliant feature-based RDO (FRDO) that is designed to increase the coding performance, when the decoded frame is analyzed by a neural network in a video coding for machine scenario. To that extent, we replace the pixel-based distortion metrics in conventional RDO of VTM-8.0 with distortion metrics calculated in the feature space created by the first layers of a neural network. Throughout several tests with the segmentation network Mask R-CNN and single images from the Cityscapes dataset, we compare the proposed FRDO and its hybrid version HFRDO with different distortion measures in the feature space against the conventional RDO. With HFRDO, up to 5.49 % bitrate can be saved compared to the VTM-8.0 implementation in terms of Bjøntegaard Delta Rate and using the weighted average precision as quality metric. Additionally, allowing the encoder to vary the quantization parameter results in coding gains for the proposed HFRDO of up 9.95 % compared to conventional VTM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源