论文标题

学习针对主动领域适应的独特边缘

Learning Distinctive Margin toward Active Domain Adaptation

论文作者

Xie, Ming, Li, Yuxi, Wang, Yabiao, Luo, Zekun, Gan, Zhenye, Sun, Zhongyi, Chi, Mingmin, Wang, Chengjie, Wang, Pei

论文摘要

尽管在无监督或少数半监督的设置下,重点努力提高域适应能力(DA),但由于其在更实用的方式转移模型的适用性,而对目标数据的注释资源有限,因此积极学习的解决方案开始引起更多的关注。然而,大多数主动学习方法并非固有地旨在处理数据分布之间的域间隙,另一方面,某些主动域的适应方法(ADA)通常需要复杂的查询功能,这很容易容易拟合。在这项工作中,我们提出了一种称为“逐个差异”(SDM)的简洁但有效的ADA方法,该方法由最大边距损失和用于数据选择的边距采样算法组成。我们提供理论分析,以表明SDM的工作方式与支持向量机一样,在决策边界围绕决策范围存储了辛苦示例,并利用它们以找到信息丰富且可转移的数据。此外,我们提出了我们方法的两个变体,一种旨在自适应地调节梯度从边缘损失中调节梯度,另一个通过考虑梯度方向来提高边缘采样的选择性。我们使用标准的主动学习设置进行基准测试SDM,证明我们的算法可以通过良好的数据可扩展性实现竞争结果。代码可从https://github.com/tencentyouturesearch/activelearning-sdm获得

Despite plenty of efforts focusing on improving the domain adaptation ability (DA) under unsupervised or few-shot semi-supervised settings, recently the solution of active learning started to attract more attention due to its suitability in transferring model in a more practical way with limited annotation resource on target data. Nevertheless, most active learning methods are not inherently designed to handle domain gap between data distribution, on the other hand, some active domain adaptation methods (ADA) usually requires complicated query functions, which is vulnerable to overfitting. In this work, we propose a concise but effective ADA method called Select-by-Distinctive-Margin (SDM), which consists of a maximum margin loss and a margin sampling algorithm for data selection. We provide theoretical analysis to show that SDM works like a Support Vector Machine, storing hard examples around decision boundaries and exploiting them to find informative and transferable data. In addition, we propose two variants of our method, one is designed to adaptively adjust the gradient from margin loss, the other boosts the selectivity of margin sampling by taking the gradient direction into account. We benchmark SDM with standard active learning setting, demonstrating our algorithm achieves competitive results with good data scalability. Code is available at https://github.com/TencentYoutuResearch/ActiveLearning-SDM

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源