论文标题
删除推荐的多模式表示学习
Disentangled Multimodal Representation Learning for Recommendation
论文作者
论文摘要
已经提出了许多多模式推荐系统,以利用与用户或项目(例如用户评论和项目图像)相关的丰富侧面信息,以学习更好的用户和项目表示以提高建议性能。心理学的研究表明,用户在组织各种方式组织信息的利用方面存在个体差异。因此,对于某个项目(例如外观或质量)的一定因素,不同模式的特征对用户的重要性不同。但是,现有方法忽略了以下事实:不同的模式对用户对项目的各种因素的偏好有所不同。鉴于这一点,在本文中,我们提出了一种新颖的分离多模式表示学习(DMRL)推荐模型,该模型可以吸引用户对用户偏好模型中每个因素的不同方式的关注。特别是,我们采用一种分离的表示技术来确保每种模式中不同因素的特征彼此独立。然后,设计了多模式的注意机制,以捕获用户对每个因素的模态偏好。根据注意机制获得的估计权重,我们通过将用户偏好的偏好得分与目标项目的每个因素相结合,而不是不同模态。对五个现实世界数据集的广泛评估证明了与现有方法相比,我们的方法的优势。
Many multimodal recommender systems have been proposed to exploit the rich side information associated with users or items (e.g., user reviews and item images) for learning better user and item representations to improve the recommendation performance. Studies from psychology show that users have individual differences in the utilization of various modalities for organizing information. Therefore, for a certain factor of an item (such as appearance or quality), the features of different modalities are of varying importance to a user. However, existing methods ignore the fact that different modalities contribute differently towards a user's preference on various factors of an item. In light of this, in this paper, we propose a novel Disentangled Multimodal Representation Learning (DMRL) recommendation model, which can capture users' attention to different modalities on each factor in user preference modeling. In particular, we employ a disentangled representation technique to ensure the features of different factors in each modality are independent of each other. A multimodal attention mechanism is then designed to capture users' modality preference for each factor. Based on the estimated weights obtained by the attention mechanism, we make recommendations by combining the preference scores of a user's preferences to each factor of the target item over different modalities. Extensive evaluation on five real-world datasets demonstrate the superiority of our method compared with existing methods.