论文标题

极性,单极性,单极性和$(s,1)$ - 极性在cographs概括中的极小障碍

Minimal obstructions for polarity, monopolarity, unipolarity and $(s,1)$-polarity in generalizations of cographs

论文作者

Contreras-Mendoza, Fernando Esteban, Hernández-Cruz, César

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

It is known that every hereditary property can be characterized by finitely many minimal obstructions when restricted to either the class of cographs or the class of $P_4$-reducible graphs. In this work, we prove that also when restricted to the classes of $P_4$-sparse graphs and $P_4$-extendible graphs (both of which extend $P_4$-reducible graphs) every hereditary property can be characterized by finitely many minimal obstructions. We present complete lists of $P_4$-sparse and $P_4$-extendible minimal obstructions for polarity, monopolarity, unipolarity, and $(s,1)$-polarity, where $s$ is a positive integer. In parallel to the case of $P_4$-reducible graphs, all the $P_4$-sparse minimal obstructions for these hereditary properties are cographs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源