论文标题
分子极化子的半经典实时核电子轨道动力学:电子和振动强耦合的统一理论
Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings
论文作者
论文摘要
分子极性子已成为通过强烈的光 - 物质相互作用来远程控制分子特性的新兴平台。在此,开发了一种半经典方法来描述分子极化子,通过自我传播经典腔模式的实时动力学和由核电子轨道(NEO)方法描述的量子分子子系统,其中电子和指定的核在同一水平上被机械地处理。这种半经典的实时NEO方法提供了对电子和振动强耦合的统一描述,并描述了腔对耦合核电子动力学的影响,同时包括核量子效应。对于单个O-羟基苯甲醛分子在电子强耦合下,该方法表明,激发态分子内质子转移的腔抑制不仅受极化势能表面的影响,而且还受化学反应的时间表。这项工作为探索光学腔内核电子量子动力学系统中的集体强耦合奠定了基础。
Molecular polaritons have become an emerging platform for remotely controlling molecular properties through strong light-matter interactions. Herein, a semiclassical approach is developed for describing molecular polaritons by self-consistently propagating the real-time dynamics of classical cavity modes and a quantum molecular subsystem described by the nuclear-electronic orbital (NEO) method, where electrons and specified nuclei are treated quantum mechanically on the same level. This semiclassical real-time NEO approach provides a unified description of electronic and vibrational strong couplings and describes the impact of the cavity on coupled nuclear-electronic dynamics while including nuclear quantum effects. For a single o-hydroxybenzaldehyde molecule under electronic strong coupling, this approach shows that the cavity suppression of excited state intramolecular proton transfer is influenced not only by the polaritonic potential energy surface but also by the timescale of the chemical reaction. This work provides the foundation for exploring collective strong coupling in nuclear-electronic quantum dynamical systems within optical cavities.