论文标题
相对论二阶耗散性自旋流体动力学从矩的方法
Relativistic second-order dissipative spin hydrodynamics from the method of moments
论文作者
论文摘要
我们使用矩的方法从动力学理论中得出相对论的二阶耗散流体动力方程。除了通常的电荷,能量和动量的保护定律外,这种相对论耗散自旋流体动力学的理论还具有级别3旋转张量的运动方程,这是从总角动量的保护下进行的。扩展了Spin-0颗粒的常规矩方法,我们就动量和自旋变量的矩扩大了局部平衡附近的自旋依赖性分布函数。我们在普朗克常数$ \ hbar $中努力进行临时订单。如先前的工作所示,以$ \ hbar $为单位的Spin-1/2粒子的Boltzmann方程为非局部碰撞术语。然后,从玻尔兹曼方程式中,我们获得了一组无限的运动方程,用于单粒子分布函数与局部平衡的偏差的不可约合矩。为了关闭矩方程系统,需要一个截断过程。我们采用“ 14+24摩托近似”,其中“ 14”对应于电荷电流的组件和能量弹药张量和“ 24”对应于自旋张量的成分,该组件完成了二阶耗散自旋流体动力学的二阶运动方程。对于重型离子现象学的应用,我们还确定了对Pauli-Lubanski载体的耗散校正。
We derive relativistic second-order dissipative fluid-dynamical equations of motion for massive spin-1/2 particles from kinetic theory using the method of moments. Besides the usual conservation laws for charge, energy, and momentum, such a theory of relativistic dissipative spin hydrodynamics features an equation of motion for the rank-3 spin tensor, which follows from the conservation of total angular momentum. Extending the conventional method of moments for spin-0 particles, we expand the spin-dependent distribution function near local equilibrium in terms of moments of the momentum and spin variables. We work to next-to-leading order in the Planck constant $\hbar$. As shown in previous work, at this order in $\hbar$ the Boltzmann equation for spin-1/2 particles features a nonlocal collision term. From the Boltzmann equation, we then obtain an infinite set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local equilibrium. In order to close this system of moment equations, a truncation procedure is needed. We employ the "14+24-moment approximation", where "14" corresponds to the components of the charge current and the energy-momentum tensor and "24" to the components of the spin tensor, which completes the derivation of the equations of motion of second-order dissipative spin hydrodynamics. For applications to heavy-ion phenomenology, we also determine dissipative corrections to the Pauli-Lubanski vector.