论文标题

使用动态阈值的堆叠复发自动编码器方法,用于无人驾驶飞机传感器数据的异常检测

Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a Stacked Recurrent Autoencoder Method with Dynamic Thresholding

论文作者

Bell1, Victoria, Rengasamy, Divish, Rothwell, Benjamin, Figueredo, Grazziela P

论文摘要

随着航空技术的最新发展,无人驾驶汽车(UAV)在国际上越来越多地融入商业和军事行动。对飞机数据应用的研究对于提高安全性,降低运营成本并开发了空中技术的下一个前沿至关重要。由于这些原因,拥有一个可以准确识别飞机中异常行为的异常检测系统至关重要。本文提出了一个结合长短期记忆(LSTM)深度学习自动编码器的系统,具有新型的动态阈值算法和加权损失功能,以便对无人机数据集进行异常检测,以促进正在进行的努力,这些努力在航空业内利用机器学习和数据分析中利用了机器学习和数据分析。动态阈值和加权损耗函数在准确性相关的性能指标和真实故障检测速度方面都显示出标准静态阈值方法的有希望的改进。

With substantial recent developments in aviation technologies, Unmanned Aerial Vehicles (UAVs) are becoming increasingly integrated in commercial and military operations internationally. Research into the applications of aircraft data is essential in improving safety, reducing operational costs, and developing the next frontier of aerial technology. Having an outlier detection system that can accurately identify anomalous behaviour in aircraft is crucial for these reasons. This paper proposes a system incorporating a Long Short-Term Memory (LSTM) Deep Learning Autoencoder based method with a novel dynamic thresholding algorithm and weighted loss function for anomaly detection of a UAV dataset, in order to contribute to the ongoing efforts that leverage innovations in machine learning and data analysis within the aviation industry. The dynamic thresholding and weighted loss functions showed promising improvements to the standard static thresholding method, both in accuracy-related performance metrics and in speed of true fault detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源