论文标题
自洽的动力模型以有限的范围 - I.均匀密度球
Self-consistent dynamical models with a finite extent -- I. The uniform density sphere
论文作者
论文摘要
在有限范围内生成动力学模型的标准方法是将结合能将截断应用于分布函数。这种方法的缺点是无法选择要开始的密度,即不能通过分析来计算重要的动力学数量,并且将可能的绑定轨道的一部分排除在外。我们探索另一条路线,并从半径的截断开始,而不是结合能中的截断。我们专注于最简单的截短密度曲线,即均匀密度球体。我们探索最常见的反转技术,以生成均匀密度球的分布函数,对应于大量可能的各向异性谱。我们发现均匀密度球不能由标准各向同性,恒定各向异性或Osipkov-Merritt模型支持,因为所有这些模型均以负分布函数为特征。我们将Cuddeford反演方法推广到具有切向各向异性的模型,并为均匀密度球体提供了一个参数的动力学模型家族。该家族的每个成员的特征都具有各向异性轮廓,该轮廓从中心的任意值$β_0\ leqslant0 $平滑地降低,以完全切向外半径。所有模型在整个相空间中均具有正分布函数,并且所有可能的界限轨道的占用率是非零的。这表明一个人可以在有限的范围内基于预设密度曲线生成非平凡的自洽动力模型。
The standard method to generate dynamical models with a finite extent is to apply a truncation in binding energy to the distribution function. This approach has the disadvantages that one cannot choose the density to start with, that the important dynamical quantities cannot be calculated analytically, and that a fraction of the possible bound orbits are excluded a priori. We explore another route and start from a truncation in radius rather than a truncation in binding energy. We focus on the simplest truncated density profile, the uniform density sphere. We explore the most common inversion techniques to generate distribution functions for the uniform density sphere, corresponding to a large range of possible anisotropy profiles. We find that the uniform density sphere cannot be supported by the standard isotropic, constant anisotropy or Osipkov-Merritt models, as all these models are characterised by negative distribution functions. We generalise the Cuddeford inversion method to models with a tangential anisotropy and present a one-parameter family of dynamical models for the uniform density sphere. Each member of this family is characterised by an anisotropy profile that smoothly decreases from an arbitrary value $β_0\leqslant0$ at the centre to completely tangential at the outer radius. All models have a positive distribution function over the entire phase space, and a nonzero occupancy of all possible bound orbits. This shows that one can generate nontrivial self-consistent dynamical models based on preset density profile with a finite extent.