论文标题
抛物线矢量束的seshadri常数
Seshadri constants of parabolic vector bundles
论文作者
论文摘要
令$ x $为复杂的投影品种,让$ e _ {\ ast} $为$ x $上的抛物线矢量捆绑包。我们介绍了$ e _ {\ ast} $的\ textit {抛物线seshadri常数}的概念。结果表明,这些常数类似于矢量束的经典seshadri常数,特别是它们具有平行的定义和属性。我们证明了proabolic seshadri常数的抛物线质量增大的抛物线标准。我们还计算了抛物线寄生虫常数,用于对称能力和抛物线矢量束的张量产物。
Let $X$ be a complex projective variety, and let $E_{\ast}$ be a parabolic vector bundle on $X$. We introduce the notion of \textit{parabolic Seshadri constants} of $E_{\ast}$. It is shown that these constants are analogous to the classical Seshadri constants of vector bundles, in particular, they have parallel definitions and properties. We prove a Seshadri criterion for parabolic ampleness of $E_{\ast}$ in terms of parabolic Seshadri constants. We also compute parabolic Seshadri constants for symmetric powers and tensor products of parabolic vector bundles.