论文标题
通过深度学习朝着对状态的电子密度进行大规模和时空分辨的诊断
Towards Large-Scale and Spatio-temporally Resolved Diagnosis of Electronic Density of States by Deep Learning
论文作者
论文摘要
现代实验室技术(例如超快激光激发和冲击压缩)可以将物质带入具有复杂结构转化,金属化和分离动力学的高度非平衡状态。为了理解和模拟这种动态过程中电子结构和离子动力学的急剧变化,传统方法面临困难。在这里,我们证明了深神经网络(DNN)在超热性熔化过程中,在系外行星热力学条件和非质量系统下,在系外行星热力学条件和非平衡系统下,两个多组分系统的电子密度的原子局部环境依赖性(DOS)的能力。在AB ISTION方法的准确性中,可以有效地实现大规模和时间分辨的DOS诊断。此外,DNN模型给出的对DOS的原子贡献准确地揭示了所选原子的局部邻域信息,因此可以作为稳健的订单参数,以识别不同的阶段和中间局部结构,强烈强调了该DNN模型在研究动态过程中的疗效。
Modern laboratory techniques like ultrafast laser excitation and shock compression can bring matter into highly nonequilibrium states with complex structural transformation, metallization and dissociation dynamics. To understand and model the dramatic change of both electronic structures and ion dynamics during such dynamic processes, the traditional method faces difficulties. Here, we demonstrate the ability of deep neural network (DNN) to capture the atomic local-environment dependence of electronic density of states (DOS) for both multicomponent system under exoplanet thermodynamic condition and nonequilibrium system during super-heated melting process. Large scale and time-resolved diagnosis of DOS can be efficiently achieved within the accuracy of ab initio method. Moreover, the atomic contribution to DOS given by DNN model accurately reveals the information of local neighborhood for selected atom, thus can serve as robust order parameters to identify different phases and intermediate local structures, strongly highlights the efficacy of this DNN model in studying dynamic processes.