论文标题

通过等距记录转换的点过程统计深度

Statistical Depth for Point Process via the Isometric Log-Ratio Transformation

论文作者

Zhou, Xinyu, Ma, Yijia, Wu, Wei

论文摘要

统计深度是一种有用的工具,用于测量多元和功能数据的中心级别等级,在时间点过程中仍未探索。关于点过程深度的最新研究提出了两个术语的加权产物 - 一个表明该过程的基础性深度,另一个表明了鉴于基数性的时间事件的条件深度。第二个任期是巨大的挑战,因为事件时间的明显非线性结构,到目前为止,仅在定义中采用了基本的参数表示,例如高斯和迪里奇的密度。但是,这些简化的形式忽略了过程事件的基本分布,这使得该方法难以解释并应用于复杂的模式。为了解决这些问题,我们在本文中提出了一种基于分布的方法,可以通过众所周知的等距对数(ILR)转换在事件间时期。首先使用转换空间上的密度函数来定义新的深度,称为ILR深度。然后,通过时间响应转换将定义扩展到任何一般点过程。我们使用Poisson和非波森过程的模拟说明了ILR的深度,并证明了其优于以前的方法。我们还彻底检查了其在大样本中的数学特性和渐近学。最后,我们将ILR深度应用于实际数据集中,结果清楚地显示了新方法的有效性。

Statistical depth, a useful tool to measure the center-outward rank of multivariate and functional data, is still under-explored in temporal point processes. Recent studies on point process depth proposed a weighted product of two terms - one indicates the depth of the cardinality of the process, and the other characterizes the conditional depth of the temporal events given the cardinality. The second term is of great challenge because of the apparent nonlinear structure of event times, and so far only basic parametric representations such as Gaussian and Dirichlet densities were adopted in the definitions. However, these simplified forms ignore the underlying distribution of the process events, which makes the methods difficult to interpret and to apply to complicated patterns. To deal with these problems, we in this paper propose a distribution-based approach to the conditional depth via the well-known Isometric Log-Ratio (ILR) transformation on the inter-event times. The new depth, called the ILR depth, is at first defined for homogeneous Poisson process by using the density function on the transformed space. The definition is then extended to any general point process via a time-rescaling transformation. We illustrate the ILR depth using simulations of Poisson and non-Poisson processes and demonstrate its superiority over previous methods. We also thoroughly examine its mathematical properties and asymptotics in large samples. Finally, we apply the ILR depth in a real dataset and the result clearly shows the effectiveness of the new method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源