论文标题

用于单图降级的多尺度自适应网络

Multi-Scale Adaptive Network for Single Image Denoising

论文作者

Gou, Yuanbiao, Hu, Peng, Lv, Jiancheng, Zhou, Joey Tianyi, Peng, Xi

论文摘要

多尺度架构由于具有吸引力的跨尺度互补性,在各种任务中表现出了有效性。但是,现有体系结构在不考虑特定于比例的特征\ textit {i.e。}的情况下平等地对待不同的比例功能,在体系结构设计中忽略了尺度内特征。在本文中,我们揭示了多尺度架构设计的缺失作品,因此提出了一个新颖的多尺度自适应网络(MSANET),以用于单图像denoising。具体而言,由于三个新颖的神经块,\ textIt {i.e。},自适应特征块(AFEB),自适应多尺度块(AMB)和Adaptive Fusion Flobs(Affusive Fusion Block(AFUB)),MSANET同时涵盖了尺度内的特征和跨尺度互补性。简而言之,AFEB旨在自适应地保留图像细节和过滤声音,这对于具有混合细节和噪音的功能高度期望。 AMB可以扩大接受领域并汇总多尺度信息,从而满足上下文信息丰富的功能。 AFUB致力于自适应采样并将特征从一个量表转移到另一个尺度,这融合了多尺度特征,其特征的特征从粗糙到细小。与12种方法相比,对三个真实和六个合成图像数据集进行了广泛的实验表明,MSANET的优越性。可以从https://github.com/xlearning-scu/2022-neurips-msanet访问代码。

Multi-scale architectures have shown effectiveness in a variety of tasks thanks to appealing cross-scale complementarity. However, existing architectures treat different scale features equally without considering the scale-specific characteristics, \textit{i.e.}, the within-scale characteristics are ignored in the architecture design. In this paper, we reveal this missing piece for multi-scale architecture design and accordingly propose a novel Multi-Scale Adaptive Network (MSANet) for single image denoising. Specifically, MSANet simultaneously embraces the within-scale characteristics and the cross-scale complementarity thanks to three novel neural blocks, \textit{i.e.}, adaptive feature block (AFeB), adaptive multi-scale block (AMB), and adaptive fusion block (AFuB). In brief, AFeB is designed to adaptively preserve image details and filter noises, which is highly expected for the features with mixed details and noises. AMB could enlarge the receptive field and aggregate the multi-scale information, which meets the need of contextually informative features. AFuB devotes to adaptively sampling and transferring the features from one scale to another scale, which fuses the multi-scale features with varying characteristics from coarse to fine. Extensive experiments on both three real and six synthetic noisy image datasets show the superiority of MSANet compared with 12 methods. The code could be accessed from https://github.com/XLearning-SCU/2022-NeurIPS-MSANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源