论文标题
多站点和寿命脑头骨剥离的插件形状改进框架
Plug-and-play Shape Refinement Framework for Multi-site and Lifespan Brain Skull Stripping
论文作者
论文摘要
在分析脑磁共振图像(MRI)中,头骨剥离是至关重要的先决条件。尽管已经提出了许多出色的作品或工具,但它们的概括能力较低。例如,在具有特定成像参数的数据集上训练的模型不能很好地应用于具有不同成像参数的其他数据集。特别是,在寿命数据集中,由于较大的域差异,在成人数据集上训练的模型不适用于婴儿数据集。为了解决这个问题,已经提出了许多方法,其中最常见的基于特征对齐的域适应性。不幸的是,此方法具有一些固有的缺点,需要为每个新域进行重新训练,并且需要同时访问两个域的输入图像。在本文中,我们为多站点和寿命头骨剥离设计了一个插件形状改进(PSR)框架。为了处理多站点寿命数据集之间的域移位,我们利用了先验的大脑形状,这是成像参数和年龄不变的。实验表明,我们的框架可以胜过多站点寿命数据集的最先进方法。
Skull stripping is a crucial prerequisite step in the analysis of brain magnetic resonance images (MRI). Although many excellent works or tools have been proposed, they suffer from low generalization capability. For instance, the model trained on a dataset with specific imaging parameters cannot be well applied to other datasets with different imaging parameters. Especially, for the lifespan datasets, the model trained on an adult dataset is not applicable to an infant dataset due to the large domain difference. To address this issue, numerous methods have been proposed, where domain adaptation based on feature alignment is the most common. Unfortunately, this method has some inherent shortcomings, which need to be retrained for each new domain and requires concurrent access to the input images of both domains. In this paper, we design a plug-and-play shape refinement (PSR) framework for multi-site and lifespan skull stripping. To deal with the domain shift between multi-site lifespan datasets, we take advantage of the brain shape prior, which is invariant to imaging parameters and ages. Experiments demonstrate that our framework can outperform the state-of-the-art methods on multi-site lifespan datasets.