论文标题
通过扩散模型采样迈向性能且可靠的无效MR重建
Towards performant and reliable undersampled MR reconstruction via diffusion model sampling
论文作者
论文摘要
磁共振(MR)来自采样较低的采集的图像重建有望更快地扫描时间。为此,当前最新的(SOTA)方法利用深层神经网络和监督培训来学习恢复模型。尽管这些方法实现了令人印象深刻的表现,但学习模型在看不见的降解时可能会脆弱,例如当给出不同的加速度因子时。这些方法通常也是确定性的,并为解决问题的问题提供了单一的解决方案。因此,从业者很难理解重建的可靠性。我们介绍了基于新型扩散模型的MR重建方法DiffuseRecon。 diffuseRecon根据观察到的信号和预训练的扩散模型指导生成过程,并且不需要对特定加速因子的额外培训。扩散本质上是随机的,并通过完全采样的MR图像的分布产生结果。因此,它使我们能够明确可视化不同的潜在重建解决方案。最后,DivfuseRecon提出了一种加速的,粗到细的蒙特卡洛抽样方案,以近似最可能的重建候选者。拟议的散射素会从FastMRI和SKM-TEA中的原始采集信号中重建SOTA性能。代码将在www.github.com/cpeng93/diffuserecon上开放。
Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon.