论文标题

使用多功能公共形式和本地语义指导的车道检测

Lane Detection with Versatile AtrousFormer and Local Semantic Guidance

论文作者

Yang, Jiaxing, Zhang, Lihe, Lu, Huchuan

论文摘要

车道检测是自主驾驶中的核心功能之一,最近引起了广泛的关注。段巷道实例的网络,尤其是外观不佳的网络,必须能够探索车道分布属性。大多数现有的方法倾向于采用基于CNN的技术。一些尝试将最新可爱的Seq2Seq变压器\ cite {变压器}结合起来。但是,他们对全球信息收集能力和高昂计算的天生缺点禁止广泛的进一步应用。在这项工作中,我们提出了非常变压器(AtrousFormer)来解决问题。它的变体局部室外形式将交织到特征提取器中以增强提取。他们首先按行收集信息,然后以专用方式列列,最终使我们的网络具有更强的信息收集能力和更好的计算效率。为了进一步提高性能,我们还提出了一个局部的语义指导解码器,以更准确地描述车道的身份和形状,其中预测的每个车道起点的高斯映射都用于指导该过程。在三个具有挑战性的基准(Culane,Tusimple和BDD100K)上取得了广泛的结果表明,我们的网络对艺术的状态表现出色。

Lane detection is one of the core functions in autonomous driving and has aroused widespread attention recently. The networks to segment lane instances, especially with bad appearance, must be able to explore lane distribution properties. Most existing methods tend to resort to CNN-based techniques. A few have a try on incorporating the recent adorable, the seq2seq Transformer \cite{transformer}. However, their innate drawbacks of weak global information collection ability and exorbitant computation overhead prohibit a wide range of the further applications. In this work, we propose Atrous Transformer (AtrousFormer) to solve the problem. Its variant local AtrousFormer is interleaved into feature extractor to enhance extraction. Their collecting information first by rows and then by columns in a dedicated manner finally equips our network with stronger information gleaning ability and better computation efficiency. To further improve the performance, we also propose a local semantic guided decoder to delineate the identities and shapes of lanes more accurately, in which the predicted Gaussian map of the starting point of each lane serves to guide the process. Extensive results on three challenging benchmarks (CULane, TuSimple, and BDD100K) show that our network performs favorably against the state of the arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源