论文标题
在Diophantine方程式上$σ_{2}(\ edimelline {x} _ {n})=σ_{n}(\ overline {x} _ {n})$
On the Diophantine equation $σ_{2}(\overline{X}_{n})=σ_{n}(\overline{X}_{n})$
论文作者
论文摘要
在本说明中,我们调查了标题diophantine方程的正整数解决方案的集合$ s(n)$。特别是,对于给定的$ n $,我们证明了解决方案数的有限性,请确切地对$σ_{2}的共同值(\ edline {x} _ {n})$和$σ_{n} $和$ x {n}(\ edimelline {x}} _ {n})$以及最大值的$ x_ {此外,我们列举了$ n \ leq 16 $的所有解决方案,并讨论了$ x_ {n}/x_ {n-1} $的值集,而不是$ s(n)$的元素。
In this note we investigate the set $S(n)$ of positive integer solutions of the title Diophantine equation. In particular, for a given $n$ we prove boundedness of the number of solutions, give precise upper bound on the common value of $σ_{2}(\overline{X}_{n})$ and $σ_{n}(\overline{X}_{n})$ together with the biggest value of the variable $x_{n}$ appearing in the solution. Moreover, we enumerate all solutions for $n\leq 16$ and discuss the set of values of $x_{n}/x_{n-1}$ over elements of $S(n)$.