论文标题

在自动驾驶中进行运动预测的占用流场

Occupancy Flow Fields for Motion Forecasting in Autonomous Driving

论文作者

Mahjourian, Reza, Kim, Jinkyu, Chai, Yuning, Tan, Mingxing, Sapp, Ben, Anguelov, Dragomir

论文摘要

我们提出了占用流场,这是一种对多种代理进行运动预测的新表示,这是自主驾驶中的重要任务。我们的表示是时空网格,每个网格单元均包含任何试剂所占据的细胞的概率,又包含一个二维流量矢量,代表该单元中运动的方向和大小。我们的方法成功地减轻了两种最常用的运动预测表示的缺点:轨迹集和占用网格。尽管占用网格有效地代表了许多代理的概率位置,但它们不会捕获代理运动并失去代理身份。为此,我们提出了一个深度学习体系结构,该体系结构借助新的流量痕量损失来产生占用流量,从而在占用和流动预测之间建立了一致性。我们使用三个指标在占用预测,运动估计和代理ID恢复方面证明了方法的有效性。此外,我们介绍了预测投机剂的问题,这些问题是目前可能通过二次批准或进入视野在未来出现的推销药物。我们报告了大型内部自动驾驶数据集和公共交互数据集的实验结果,并表明我们的模型表现优于最先进的模型。

We propose Occupancy Flow Fields, a new representation for motion forecasting of multiple agents, an important task in autonomous driving. Our representation is a spatio-temporal grid with each grid cell containing both the probability of the cell being occupied by any agent, and a two-dimensional flow vector representing the direction and magnitude of the motion in that cell. Our method successfully mitigates shortcomings of the two most commonly-used representations for motion forecasting: trajectory sets and occupancy grids. Although occupancy grids efficiently represent the probabilistic location of many agents jointly, they do not capture agent motion and lose the agent identities. To this end, we propose a deep learning architecture that generates Occupancy Flow Fields with the help of a new flow trace loss that establishes consistency between the occupancy and flow predictions. We demonstrate the effectiveness of our approach using three metrics on occupancy prediction, motion estimation, and agent ID recovery. In addition, we introduce the problem of predicting speculative agents, which are currently-occluded agents that may appear in the future through dis-occlusion or by entering the field of view. We report experimental results on a large in-house autonomous driving dataset and the public INTERACTION dataset, and show that our model outperforms state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源