论文标题

从视觉演示中学习顺序操纵任务的感觉运动原始

Learning Sensorimotor Primitives of Sequential Manipulation Tasks from Visual Demonstrations

论文作者

Liang, Junchi, Wen, Bowen, Bekris, Kostas, Boularias, Abdeslam

论文摘要

这项工作旨在学习如何执行由几个,连续执行的低级子任务组成的复杂机器人操纵任务,作为输入的一些视觉证明,对某人执行的任务进行了一些视觉演示。子任务包括移动机器人的最终效应器,直到达到任务空间中的子目标区域,执行动作并在满足前条件时触发下一个子任务。该领域中的大多数先前工作都关注仅学习低级任务,例如击球或抓住对象并抓住它。本文介绍了一个新的基于神经网络的框架,用于同时学习低级政策以及高级策略,例如确定要选择下一个对象或将其相对于场景中的其他对象相对放置的对象。提出方法的一个关键特征是,策略是直接从任务演示的原始视频中学到的,而没有任何手动注释或后处理数据。用机器人臂对物体操纵任务进行的经验结果表明,所提出的网络可以有效地从真实的视觉演示中学习以执行任务,并优于流行的模仿学习算法。

This work aims to learn how to perform complex robot manipulation tasks that are composed of several, consecutively executed low-level sub-tasks, given as input a few visual demonstrations of the tasks performed by a person. The sub-tasks consist of moving the robot's end-effector until it reaches a sub-goal region in the task space, performing an action, and triggering the next sub-task when a pre-condition is met. Most prior work in this domain has been concerned with learning only low-level tasks, such as hitting a ball or reaching an object and grasping it. This paper describes a new neural network-based framework for learning simultaneously low-level policies as well as high-level policies, such as deciding which object to pick next or where to place it relative to other objects in the scene. A key feature of the proposed approach is that the policies are learned directly from raw videos of task demonstrations, without any manual annotation or post-processing of the data. Empirical results on object manipulation tasks with a robotic arm show that the proposed network can efficiently learn from real visual demonstrations to perform the tasks, and outperforms popular imitation learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源