论文标题
枢轴翻译和语义感知垃圾箱编码的语义隐密术
Semantic-Preserving Linguistic Steganography by Pivot Translation and Semantic-Aware Bins Coding
论文作者
论文摘要
语言隐志(LS)旨在将秘密信息嵌入到高度编码的文本中,以进行秘密交流。它可以大致分为两个主要类别,即基于修改的LS(MLS)和基于生成的LS(GLS)。与ML通过在不损害文本含义的情况下稍微修改给定文本来隐藏秘密数据的ML不同,GLS使用训练有素的语言模型直接生成携带秘密数据的文本。 MLS方法的一个常见缺点是,嵌入有效载荷非常低,其回报很好地保留了文本的语义质量。相比之下,GLS允许数据隐藏物嵌入高有效载荷,这必须支付不可控制的语义的高价。在本文中,我们提出了一种新颖的LS方法来通过应用类似GLS的信息编码策略在两种不同的语言和嵌入秘密数据之间调整给定文本来修改给定文本。我们的目的是改变给定文本的表达,使能够嵌入高的有效载荷,同时保持语义信息不变。实验结果表明,所提出的工作不仅实现了高嵌入有效载荷,而且还显示出在维持语义一致性和抵抗语言stansanlysis中的出色表现。
Linguistic steganography (LS) aims to embed secret information into a highly encoded text for covert communication. It can be roughly divided to two main categories, i.e., modification based LS (MLS) and generation based LS (GLS). Unlike MLS that hides secret data by slightly modifying a given text without impairing the meaning of the text, GLS uses a trained language model to directly generate a text carrying secret data. A common disadvantage for MLS methods is that the embedding payload is very low, whose return is well preserving the semantic quality of the text. In contrast, GLS allows the data hider to embed a high payload, which has to pay the high price of uncontrollable semantics. In this paper, we propose a novel LS method to modify a given text by pivoting it between two different languages and embed secret data by applying a GLS-like information encoding strategy. Our purpose is to alter the expression of the given text, enabling a high payload to be embedded while keeping the semantic information unchanged. Experimental results have shown that the proposed work not only achieves a high embedding payload, but also shows superior performance in maintaining the semantic consistency and resisting linguistic steganalysis.