论文标题
ho红瓦尔夫·利法兹宇宙学的周期性轨道
Periodic orbits in Hořava-Lifshitz cosmologies
论文作者
论文摘要
我们考虑在空间上均匀的Ho树hlava-lifshitz(HL)模型,该模型通过(0,1)$ in(0,1)$ in(0,1)$ in($ v = 1/2 $)扰动一般相对性(gr)。我们描述了极端情况的动态$ v = 0 $,它具有通常的bianchi层次结构:类型$ \ mathrm {i} $(Eqeilibria的Kasner Circle),类型$ \ MATHRM {II {II} $(诱导Kasner Map)和类型$ \ Mathrm {vi_0} $ {VI_0} $ {VI_0}杂斜学)。对于类型$ \ MATHRM {VIII} $和$ \ MATHRM {ix} $,我们使用计算机辅助的方法来证明存在远离Mixmaster吸引子的周期性轨道的存在,因此我们获得了一种新的行为,而新行为则不受BKL图片为BKL类似Kasner的状态的bkl图片。
We consider spatially homogeneous Hořava-Lifshitz (HL) models that perturb General Relativity (GR) by a parameter $v\in (0,1)$ such that GR occurs at $v=1/2$. We describe the dynamics for the extremal case $v=0$, which possess the usual Bianchi hierarchy: type $\mathrm{I}$ (Kasner circle of equilibria), type $\mathrm{II}$ (heteroclinics that induce the Kasner map) and type $\mathrm{VI_0},\mathrm{VII_0}$ (further heteroclinics). For type $\mathrm{VIII}$ and $\mathrm{IX}$, we use a computer-assisted approach to prove the existence of periodic orbits which are far from the Mixmaster attractor and thereby we obtain a new behaviour which is not described by the BKL picture of bouncing Kasner-like states.