论文标题
$ \ Mathcal {pt} $ - 对称的胶线磁铁中的非线性自旋效果
Nonlinear spin Hall effect in $\mathcal{PT}$-symmetric collinear magnets
论文作者
论文摘要
从理论上讲,我们在$ \ Mathcal {pt} $ - 对称抗铁磁金属中研究了非线性自旋霍尔效应,该金属是有效的自旋电流发生器。我们阐明了新出现的自旋依赖性浆果曲率偶极子是非线性自旋霍尔效应的微观起源,该效果既不为零,既没有相对论的自旋轨道耦合,均匀的磁化强度,也不是旋转式谱带结构。通过分析无自旋轨道耦合的微观抗铁磁模型,以直观地理解现象,我们阐明了必要的跳跃过程,并有一种条件来增强非线性自旋霍尔电导率。我们还提供了一个完整的表,以在所有$ \ Mathcal {pt} $ - 对称的黑白磁点组中包括NéelVector,Odd-Parity Multiles,非线性自旋电导率张量和候选材料之间的有用对应关系。
We theoretically investigate a nonlinear spin Hall effect in $\mathcal{PT}$-symmetric antiferromagnetic metals, which serve as an efficient spin current generator. We elucidate that an emergent spin-dependent Berry curvature dipole is a microscopic origin of the nonlinear spin Hall effect, which becomes nonzero with neither relativistic spin-orbit coupling, uniform magnetization, nor spin-split band structure. By analyzing a microscopic antiferromagnetic model without spin-orbit coupling for an intuitive understanding of the phenomena, we elucidate essential hopping processes and a condition to enhance the nonlinear spin Hall conductivity. We also provide a complete table to include useful correspondence among the Néel vector, odd-parity multipoles, nonlinear spin conductivity tensor, and candidate materials in all the $\mathcal{PT}$-symmetric black-and-white magnetic point groups.