论文标题
视频异常检测的以对象为中心和内存引导的正态性重建
Object-centric and memory-guided normality reconstruction for video anomaly detection
论文作者
论文摘要
本文解决了视频检查问题的视频检查问题。由于异常事件的固有稀有性和异质性,该问题被视为一种正态建模策略,在这种策略中,我们的模型学习以对象为中心的正常模式,而无需在训练过程中看到异常样本。主要贡献在于耦合预处理的对象级动作具有基于余弦的异常估计函数的原型原型,因此通过向基于主流重建的策略引入其他约束来扩展以前的方法。我们的框架利用外观和运动信息来学习对象级别的行为并捕获内存模块中的原型模式。在几个知名数据集上进行的实验证明了我们方法的有效性,因为它在最相关的时空评估指标上优于当前最新的方法。
This paper addresses video anomaly detection problem for videosurveillance. Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy, in which our model learns object-centric normal patterns without seeing anomalous samples during training. The main contributions consist in coupling pretrained object-level action features prototypes with a cosine distance-based anomaly estimation function, therefore extending previous methods by introducing additional constraints to the mainstream reconstruction-based strategy. Our framework leverages both appearance and motion information to learn object-level behavior and captures prototypical patterns within a memory module. Experiments on several well-known datasets demonstrate the effectiveness of our method as it outperforms current state-of-the-art on most relevant spatio-temporal evaluation metrics.