论文标题

逐步功能融合:本地向导全球

Stepwise Feature Fusion: Local Guides Global

论文作者

Wang, Jinfeng, Huang, Qiming, Tang, Feilong, Meng, Jia, Su, Jionglong, Song, Sifan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Colonoscopy, currently the most efficient and recognized colon polyp detection technology, is necessary for early screening and prevention of colorectal cancer. However, due to the varying size and complex morphological features of colonic polyps as well as the indistinct boundary between polyps and mucosa, accurate segmentation of polyps is still challenging. Deep learning has become popular for accurate polyp segmentation tasks with excellent results. However, due to the structure of polyps image and the varying shapes of polyps, it easy for existing deep learning models to overfitting the current dataset. As a result, the model may not process unseen colonoscopy data. To address this, we propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models. Specifically, our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and restrict attention dispersion. The SSFormer achieves statet-of-the-art performance in both learning and generalization assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源