论文标题

数据驱动的HI2LO用于粗网格系统热液压建模

Data-driven Hi2Lo for Coarse-grid System Thermal Hydraulic Modeling

论文作者

Iskhakov, Arsen S., Dinh, Nam T., Leite, Victor Coppo, Merzari, Elia

论文摘要

由于其数值效率,传统的1D系统热液压分析已被广泛应用于核工业。但是,这些代码本质上是多尺度多维流的建模。对于此类情况,粗网格3D模拟由于成本与建模者可以从结果中提取的信息量之间的平衡而有用。同时,粗网格不允许在反应堆外壳中准确解析并捕获湍流混合,而现有的湍流模型(雷诺(Reynolds)应力或湍流粘度的封闭)具有较大的模型模型不确定性。因此,对此类求解器的改善引起了兴趣。在这项工作中,使用基于德克萨斯州A&M上部的案例研究来探索两种数据驱动的高低方法,以减少网格和模型引起的误差。第一种方法依赖于湍流闭合的使用,用于涡流粘度,在粗网格求解器中具有更高的分辨率/保真度。第二种方法采用人工神经网络来绘制具有关注量错误(速度场)错误的低保真输入特征。但是,两种方法均显示出通过使用具有更高保真度的数据(雷诺平均纳维尔 - 孔子和大型涡流模拟)来改善粗网格模拟结果的潜力,但是,网格引起的(离散化)误差的影响很复杂,需要进一步研究。

Traditional 1D system thermal hydraulic analysis has been widely applied in nuclear industry for licensing purposes due to its numerical efficiency. However, such codes are inherently deficient for modeling of multiscale multidimensional flows. For such scenarios coarse-grid 3D simulations are useful due to the balance between the cost and the amount of information a modeler can extract from the results. At the same time, coarse grids do not allow to accurately resolve and capture turbulent mixing in reactor enclosures, while existing turbulence models (closures for the Reynolds stresses or turbulent viscosity) have large model form uncertainties. Thus, there is an interest in the improvement of such solvers. In this work two data-driven high-to-low methodologies to reduce mesh and model-induced errors are explored using a case study based on the Texas A&M upper plenum of high-temperature gas-cooled reactor facility. The first approach relies on the usage of turbulence closure for eddy viscosity with higher resolution/fidelity in a coarse grid solver. The second methodology employs artificial neural networks to map low-fidelity input features with errors in quantities of interest (velocity fields). Both methods have shown potential to improve the coarse grid simulation results by using data with higher fidelity (Reynolds-averaged Navier-Stokes and large eddy simulations), though, influence of the mesh-induced (discretization) error is quite complex and requires further investigations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源