论文标题
两区图像分割的卡通文本演变
Cartoon-texture evolution for two-region image segmentation
论文作者
论文摘要
两个区域图像分割是将图像分为两个感兴趣的区域,即前景和背景的过程。为此,Chan等人。 [Chan,Esedoglu,Nikolova,Siam on Applied Mathematics 66(5),1632-1648,2006]设计了一个非常适合平滑图像的模型。该模型的一个缺点是,当图像包含振荡组件时,它可能会产生不良的分割。基于要分割的图像的卡通文本分解,我们提出了一个新模型,该模型能够对图像进行准确的分割,其中还包含噪声或振荡信息(例如纹理)。新型模型导致了一个非平滑约束的优化问题,我们通过ADMM方法解决了该问题。还证明了数值方案的收敛性。关于平滑,嘈杂和纹理图像的几项实验显示了所提出模型的有效性。
Two-region image segmentation is the process of dividing an image into two regions of interest, i.e., the foreground and the background. To this aim, Chan et al. [Chan, Esedoglu, Nikolova, SIAM Journal on Applied Mathematics 66(5), 1632-1648, 2006] designed a model well suited for smooth images. One drawback of this model is that it may produce a bad segmentation when the image contains oscillatory components. Based on a cartoon-texture decomposition of the image to be segmented, we propose a new model that is able to produce an accurate segmentation of images also containing noise or oscillatory information like texture. The novel model leads to a non-smooth constrained optimization problem which we solve by means of the ADMM method. The convergence of the numerical scheme is also proved. Several experiments on smooth, noisy, and textural images show the effectiveness of the proposed model.